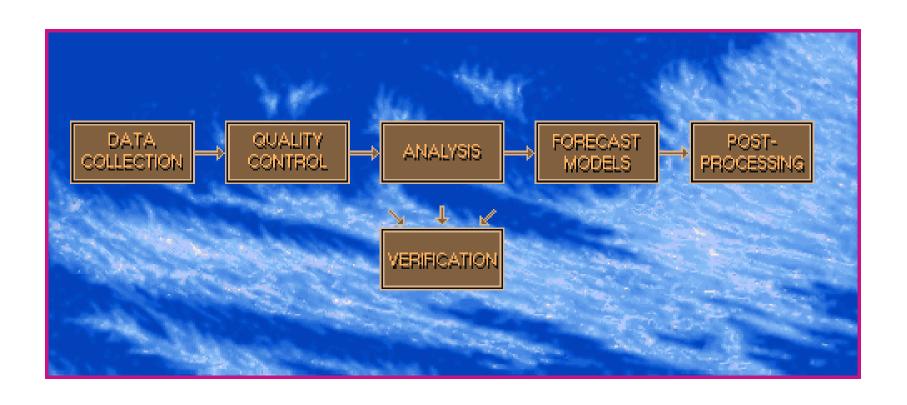


I Modelli di Previsione Meteo-Marina del Centro Nazionale di Meteorologia e Climatologia Aeronautica

Lucio Torrisi

CUGRI Università di Salerno, 13 Dicembre 2010


Overview:

- Il processo di previsione: il modello numerico e l'assimilazione dati
- Il sistema operativo di previsione numerica del CNMCA
 - Modelli atmosferici
 - Modelli delle onde
- Approccio probabilistico

Il Processo di Previsione Numerica

Cosa è un Modello Numerico?

L'atmosfera è un sistema dinamico con molti gradi di libertà. Lo stato dell'atmosfera è definito dalla distribuzione spaziale di vento, temperatura, pressione e altre variabili. La loro evoluzione temporale è descritta da un insieme di relazioni matematiche che rappresentano i processi fisico/dinamici agenti nell'atmosfera. Esse sono derivate applicando le leggi di conservazione della quantità di moto, del calore, della massa e dell'acqua. Le equazioni non possono essere risolte analiticamente; si fa uso di metodi numerici.

Modello numerico: rappresentazione matematica dei processi dinamici, fisici e chimici agenti nell'atmosfera.

Temperatura

$$\frac{\partial T}{\partial t} = -\left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial T}{\partial \lambda} + v \cos \varphi \frac{\partial T}{\partial \varphi} \right) \right\} - \varsigma \frac{\partial T}{\partial \varsigma} - \frac{1}{\rho c_{vd}} p \nabla \cdot \vec{v} + Q_T$$

Vapore acqueo

$$\frac{\partial q^{y}}{\partial t} = -\left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial q^{y}}{\partial \lambda} + v \cos \varphi \frac{\partial q^{y}}{\partial \varphi} \right) \right\} - \varsigma \frac{\partial q^{y}}{\partial \varsigma} - \left(S^{t} + S^{f} \right) + M_{q^{y}}$$

• Acqua allo stato solido e liquido

$$\frac{\partial q^{l,f}}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\left(u\frac{\partial q^{l,f}}{\partial \lambda} + v\cos\varphi\frac{\partial q^{l,f}}{\partial \varphi}\right)\right\} - \varsigma\frac{\partial q^{l,f}}{\partial \varsigma} - \frac{g}{\sqrt{\lambda}}\frac{\rho_0}{\rho}\frac{\partial P_{l,f}}{\partial \varsigma} + S^{l,f} + M_{q^{l,f}}$$

$$\frac{\partial w}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\left(u\frac{\partial w}{\partial \lambda} + v\cos\varphi\frac{\partial w}{\partial \varphi}\right)\right\} - \varsigma\frac{\partial w}{\partial \varsigma} + \frac{g}{\sqrt{\gamma}}\frac{\rho_0}{\rho}\frac{\partial P_{l,f}}{\partial \varsigma} + S^{l,f} + M_{q^{l,f}}$$

$$\frac{\partial w}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\left(u\frac{\partial w}{\partial \lambda} + v\cos\varphi\frac{\partial w}{\partial \varphi}\right)\right\} - \varsigma\frac{\partial w}{\partial \varsigma} + \frac{g}{\sqrt{\gamma}}\frac{\rho_0}{\rho}\frac{\partial P_{l,f}}{\partial \varsigma} + S^{l,f} + M_{q^{l,f}}$$

$$\frac{\partial w}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\left(u\frac{\partial w}{\partial \lambda} + v\cos\varphi\frac{\partial w}{\partial \varphi}\right)\right\} - \varsigma\frac{\partial w}{\partial \varsigma} + \frac{g}{\sqrt{\gamma}}\frac{\rho_0}{\rho}\frac{\partial P_{l,f}}{\partial \varsigma} + S^{l,f} + M_{q^{l,f}}$$

• Densità totale dell'aria

$$\rho = p \left\{ R_d \left(1 + \left(\frac{R_v}{R_d} - 1 \right) q^v - q^l - q^f \right) T^{-1} \right\}$$

$$\text{ove } \sqrt{\gamma} \equiv \frac{\partial p_0}{\partial \varsigma}, \quad E_h = \frac{1}{2} \left(u^2 + v^2 \right) e V_a = \frac{1}{a \cos \varphi} \left\{ \frac{\partial v}{\partial \lambda} - \frac{\partial}{\partial \varphi} \left(u \cos \varphi \right) \right\} + f.$$

Velocità orizzontale del vento

$$\frac{\partial u}{\partial t} = \left\{ \frac{1}{a \cos \varphi} \frac{\partial E_h}{\partial \lambda} - vV_a^{\lambda} \right\} - \varsigma \frac{\partial u}{\partial \varsigma} - \frac{1}{\rho u \cos \varphi} \left(\frac{\partial \dot{r}}{\partial \lambda} - \frac{1}{\sqrt{\gamma}} \frac{\partial \rho_0}{\partial \lambda} \frac{\partial \dot{r}}{\partial \varsigma} \right) + M_u$$

$$\frac{\partial v}{\partial t} = \left\{ \frac{1}{a} \frac{\partial E_h}{\partial \varphi} - V_a^{\lambda} \right\} - \varsigma \frac{\partial v}{\partial \varsigma} - \frac{1}{\rho u} \left(\frac{\partial \dot{r}}{\partial \varphi} - \frac{1}{\sqrt{\gamma}} \frac{\partial \rho_0}{\partial \varphi} \frac{\partial \dot{r}}{\partial \varsigma} \right) + M_{\varphi}$$

Velocità verticale

$$\begin{split} \frac{\partial v}{\partial t} &= \left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial w}{\partial t} + v \cos \varphi \frac{\partial w}{\partial \varphi} \right) \right\} - \varsigma \frac{\partial w}{\partial \varsigma} + \frac{g}{\sqrt{\gamma}} \frac{R}{\rho} \frac{\partial t}{\partial \varsigma} + \\ &+ \frac{g}{\sqrt{\gamma}} \frac{R}{\rho} \left\{ \frac{(T - T_0)}{T} - \frac{T_0 p}{T_R} + \left(\frac{R}{R_H} - 1 \right) \vec{q} - \vec{q} - \vec{q} \right\} \end{split}$$

• Perturbazione della pressione

$$\frac{\partial \vec{r}}{\partial t} = -\left\{\frac{1}{a\cos\theta}\left(u\frac{\partial \vec{r}}{\partial \lambda} + v\cos\theta\frac{\partial \vec{r}}{\partial \varphi}\right)\right\} - \varsigma\frac{\partial \vec{r}}{\partial \varsigma} + g_Qw - \left(\frac{c_{pd}}{c_{s}d}\right)p\nabla \cdot \vec{v}$$

ECMWF

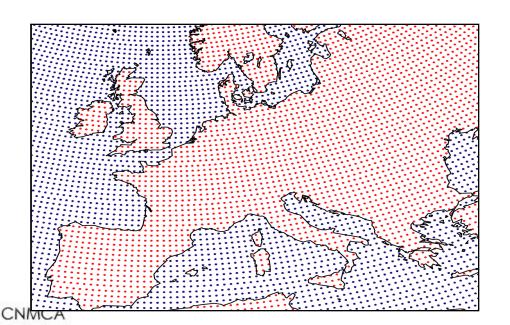
The European Centre for Medium-Range Weather Forecasts (ECMWF, the Centre) is an intergovernmental organisation supported by 33 States, based in Reading, west of London, in the United Kingdom.

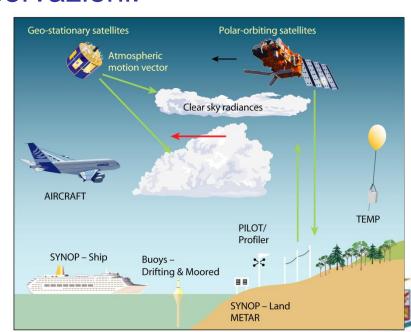
Atmospheric global model: 15km, 91 liv.vert., 240 h

II Consorzio COSMO (1998)

The general goal of COSMO (Germany, Switzerland, Italy, Greece, Poland, Romania) is to develop, improve and maintain a non-hydrostatic limited area modelling system to be used both for operational and for research applications by the members of COSMO. COSMO is initially based on the "Lokal-Modell" (LM) of DWD.

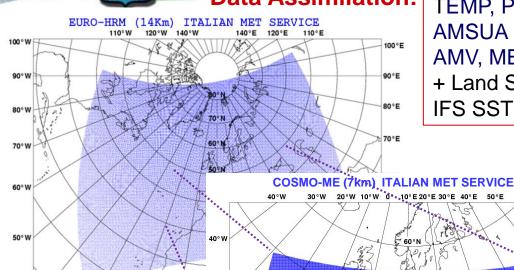
Il Servizio Meteorologico Russo è un nuovo membro




L'assimilazione dati

Tipicamente l'atmosfera è rappresentata tramite un grigliato tridimensionale, dove vengono integrate le equazioni.

La soluzione del sistema di equazioni richiede la conoscenza delle condizioni iniziali.

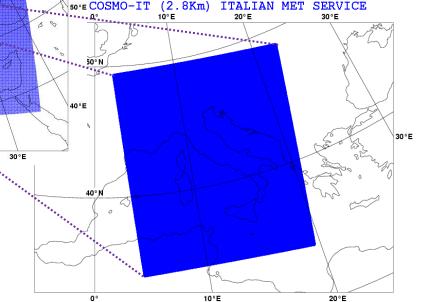

I valori iniziali delle variabili atmosferiche da specificare su ogni punto del grigliato sono ottenute tramite complesse procedure che fanno uso delle osservazioni.

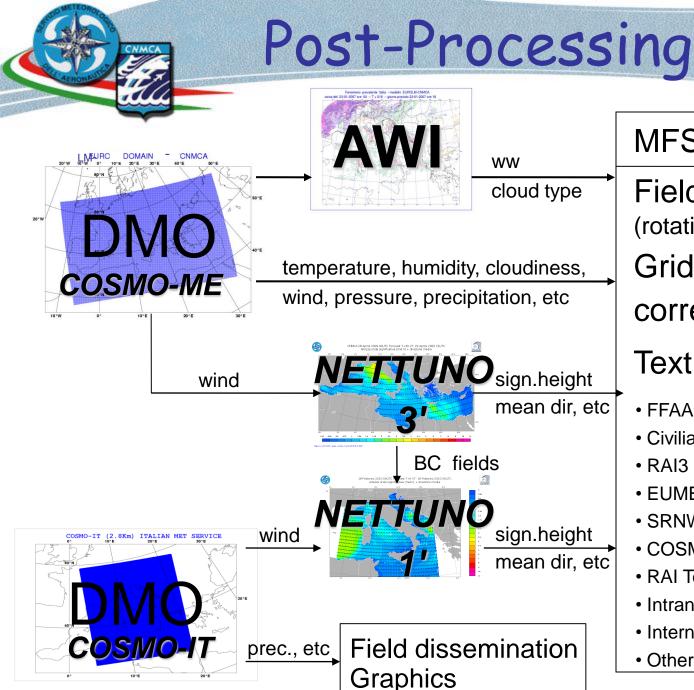
Sistema di Previsione Numerica CNMCA

3DVAR PSAS FGAT (T,u,v,qv,ps) every 3h using TEMP, PILOT, SYNOP, SHIP, BUOY, Wind Profiler, AMSUA rad., AMDAR-ACAR-AIREP, MSG/MODIS AMV, METOP/QUIKSCAT/ERS2 scatt. winds + Land SAF snow mask,

50 v.l.

IFS SST analysis once a day




- compressible equations
- explicit convection

14 km - hydrostatic equati 40 v.l. parameterized cor - compressible equations 7 km - parameterized convection 40 v.l. **Local Area Modelling:**

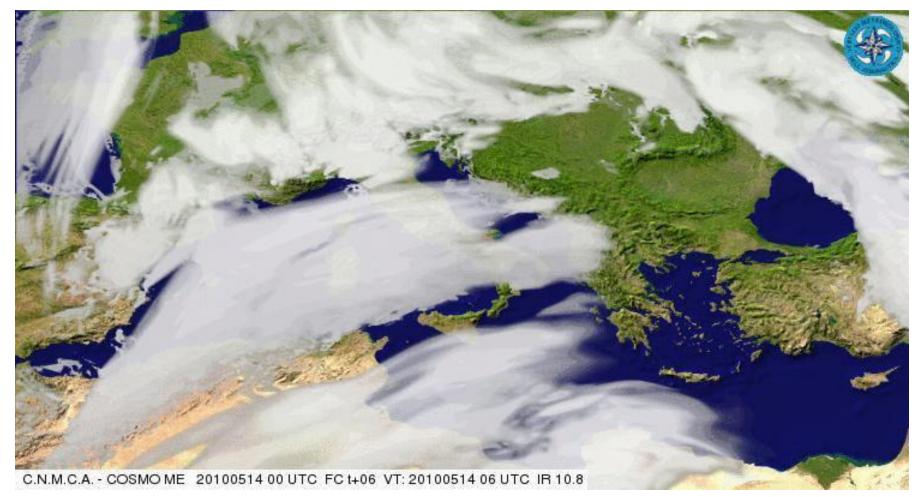
COSMO

@CNMCA

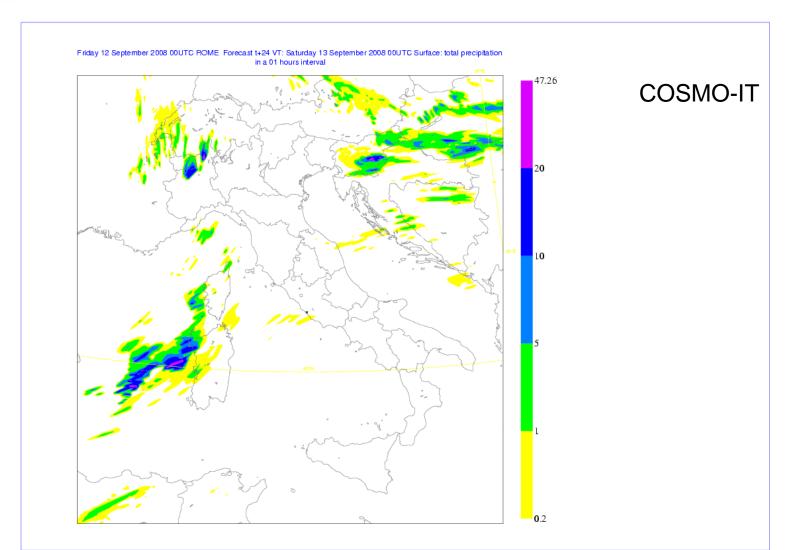
MFS (Oceanic Model)

Field dissemination (rotation / interp.)

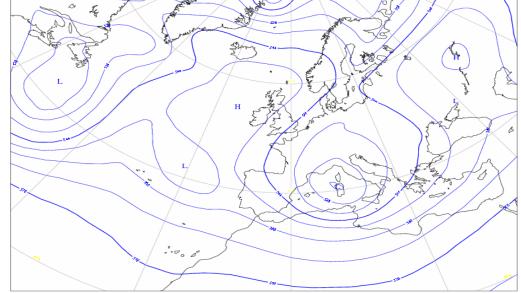
Grid point correction (det./statis.)


Text / Graphics

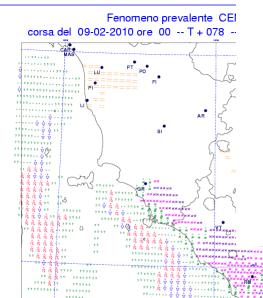
- FFAA / NATO/ NURC
- Civilian Protection Department
- RAI3 Regional Forecast (TV)
- EUMETSAT-HSAF
- SRNWP-PEPS
- COSMO verification WG
- RAI Teletext
- Intranet prometeo.meteoam.it
- Internet www.meteoam.it
- Other users

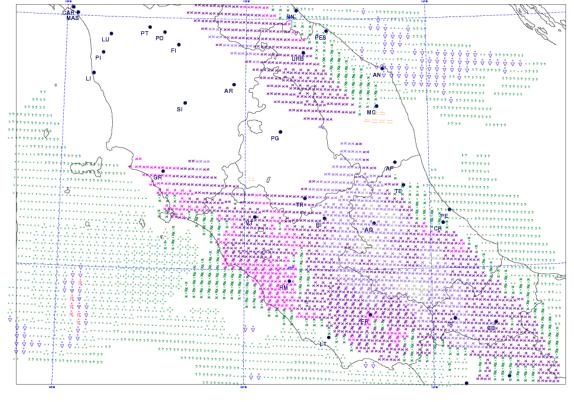

Immagini simulate da satellite

Es. precipitazione prevista



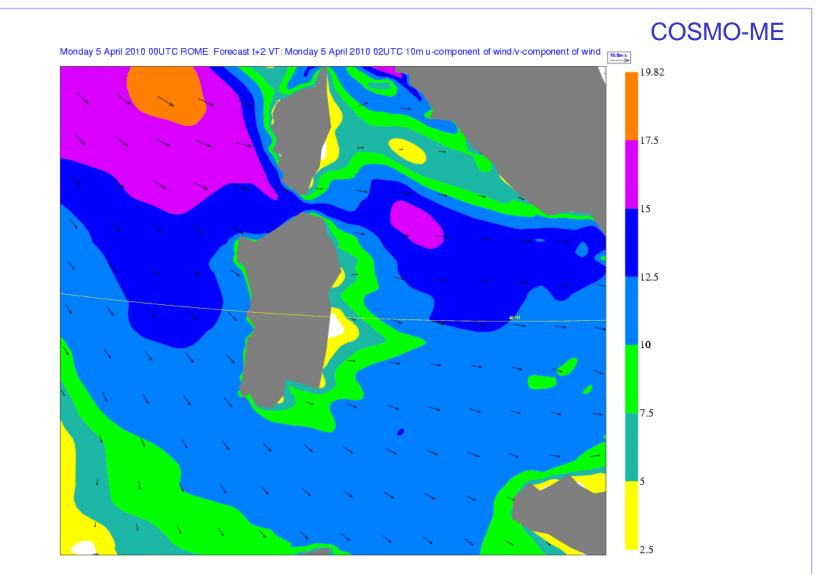
Nevicata su Roma 12 Febbraio





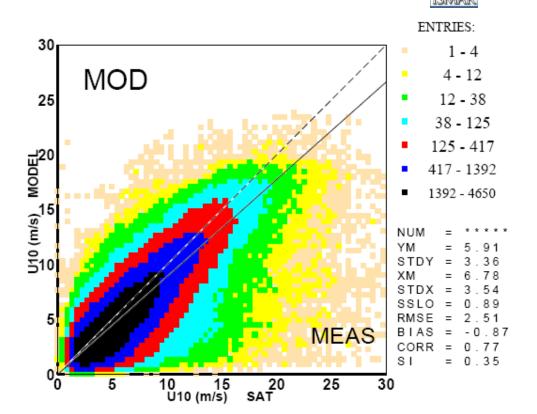
Automatic Weather Interpretation

Nevicata su Roma 12 feb 2010



Es. vento previsto

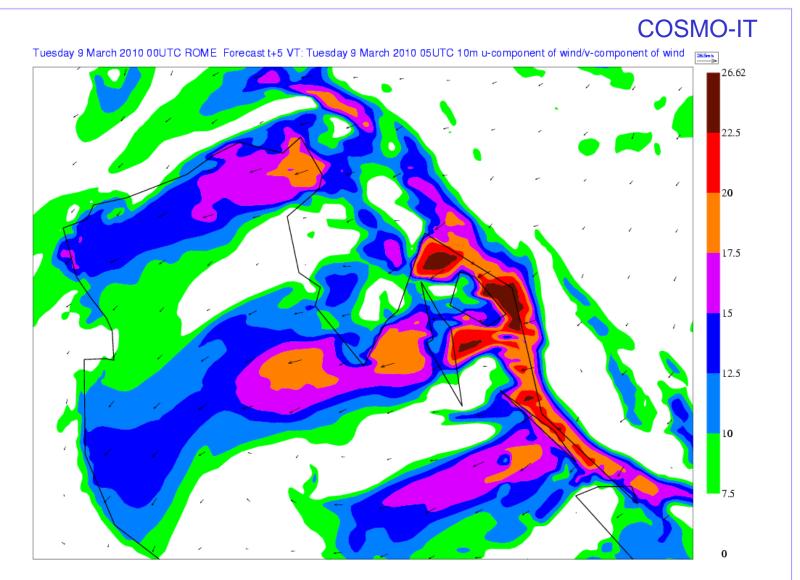
Verifica del vento previsto


Superficie (mare)

Confronto con osservazione da satellite QSCAT.

COSMO-ME sottostima debolmente l'intensità del vento sul mare (come gran parte dei modelli atmosferici operativi!)

WIND COSMOME_16 MODEL AND QSCAT DATA
IN THE MEDITERRANEAN SEA


period: DECEMBER 2006

Es. vento previsto

WAM Model

$$\frac{\partial}{\partial t}N + (\cos\phi)^{-1}\frac{\partial}{\partial\phi}(\dot{\phi}\cos\phi N) + \frac{\partial}{\partial\lambda}(\dot{\lambda}N) + \frac{\partial}{\partial\omega}(\dot{\omega}N) + \frac{\partial}{\partial\theta}(\dot{\theta}N) = S$$
 (2.24)

where

$$\dot{\phi} = (c_{\rm g}\cos\theta - \mathbf{U}|_{\rm north})R^{-1} \tag{2.25a}$$

$$\dot{\lambda} = (c_{\rm g} \sin \theta - \mathbf{U}|_{\rm east})(R \cos \phi)^{-1} \tag{2.25b}$$

$$\dot{\theta} = c_{\rm g} \sin \theta \tan \phi R^{-1} + \dot{\theta}_{\rm D} \tag{2.25c}$$

$$\dot{\omega} = \partial \Omega / \partial t \tag{2.25d}$$

and

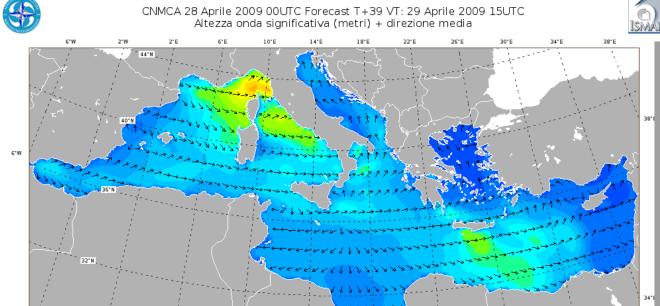
$$\dot{\theta}_{\rm D} = \left(\sin\theta \frac{\partial}{\partial\phi}\Omega - \frac{\cos\theta}{\cos\phi} \frac{\partial}{\partial\lambda}\Omega\right) (kR)^{-1} \tag{2.26}$$

and Ω is the dispersion relation given in (2.4). Before discussing possible numerical schemes to approximate the left-hand side of (2.24) we shall first discuss the parametrization of the source term S, where S is given by

$$S = S_{\rm in} + S_{\rm nl} + S_{\rm ds} + S_{\rm bot}$$
 (2.27)

These terms represent the physics of wind input, wave—wave interactions, dissipation due to whitecapping, and bottom friction.

NETTUNO



- Le previsioni per lo stato del mare sono ottenute dal sistema NETTUNO implementato al CNMCA nell'ambito di una collaborazione con l'ISMAR- Venezia
- ■NETTUNO è basato sul modello delle onde WAM (WAve Model) e sui modelli atmosferici non-idrostatici COSMO-ME e COSMO-IT.
- □ Il modello WAM determina la distribuzione spaziale e temporale (30 frequenze e 36 direzioni) dell'energia del moto ondoso utilizzando come unico termine forzante il vento superficiale.
- □ Il forzante è ottenuto dalle previsioni del vento superficiale ad alta risoluzione (7km) dei modelli atmosferici del CNMCA: COSMO-ME (7km) per la versione a 3' e COSMO-IT per la versione a 1'.

NETTUNO (3')

Based on WAM CY35R1

Magics++ 2.6.3 (64 bit) - grigna - smsman - Tue Apr 28 06:01:14 2009

1.25

1.75

Domain size	846 x 321
Grid spacing	0.05
Time step	120 s
N frequ./direct.	30 / 36
Forecast range	72 hrs
Initial time	00/12 UTC
Atm. model wind	COSMO-ME (7km)
Wind update freq.	1 hr
Initial state	Previous run
Status	Operational
Hardware	IBM (ECMWF)
N of processors	256

Nettuno (3')

Comportamento di alcuni sistemi di previsione dello stato del mare per la mareggiata del 24-25 Gennaio 2009

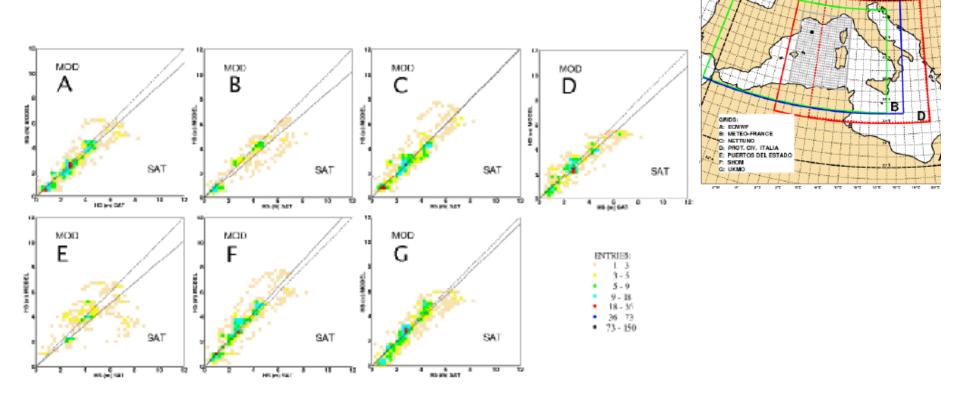
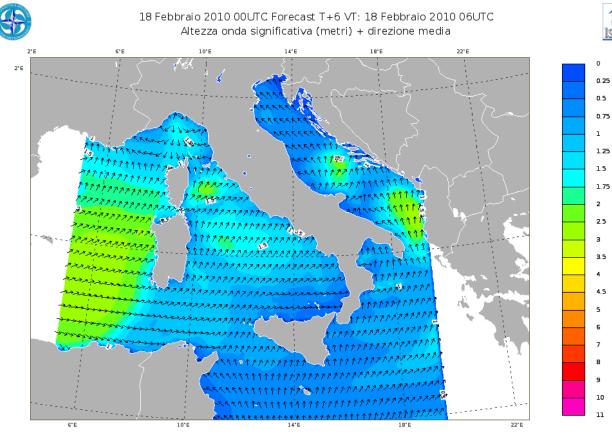


Figure 12 - Scatter diagrams for the fits between the seven considered model significant wave heights versus the Jason measured values. All the Jason passes over the Mediterranean during 24 and 25 January 2009 are considered. The colours (see scale on the right) indicate the number of cases in each pixel.

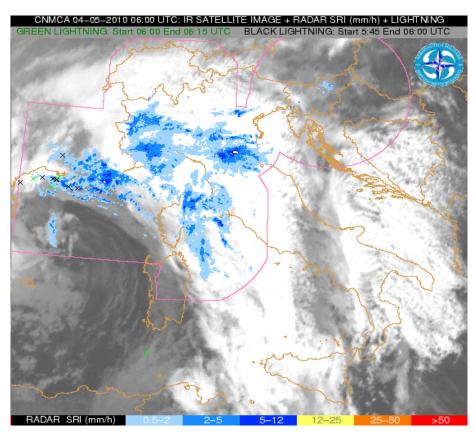

Cortesia di Gigi Cavaleri et al.

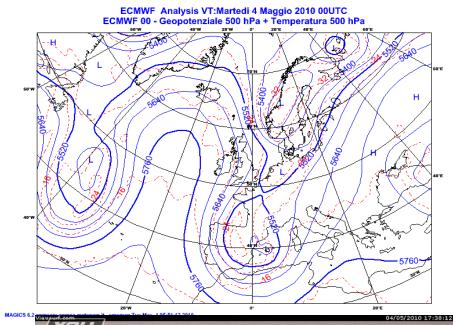
NETTUNO (1')

Based on WAM CY35R1

WAM+COSMO-IT

RC	from	NFTTI	INO	131

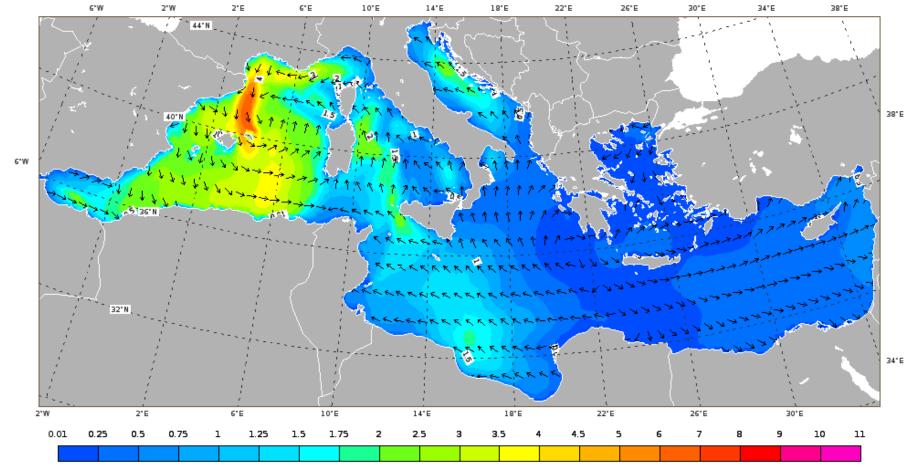

	90
121014	VK.


Domain size	871 x 688	
Grid spacing	0.0167	
Time step	60 s	
N frequ./direct.	30 / 36	
Forecast range	24 hrs	
Initial time	00/12 UTC	
Atm. model wind	COSMO-IT (2.8km)	
Wind update freq.	1 hr	
Initial state	Previous run	
Status	Operational	
Hardware	IBM (ECMWF)	
N of processors	256	

Caso 3-4 Maggio 2010

Ciclone Ext. su Mediterraneo Occidentale

News from You

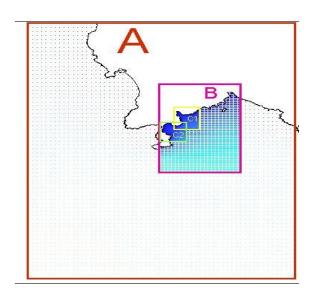

4 Maggio: Mareggiata su Costa Azzurra

Es. mareggiata 4 maggio

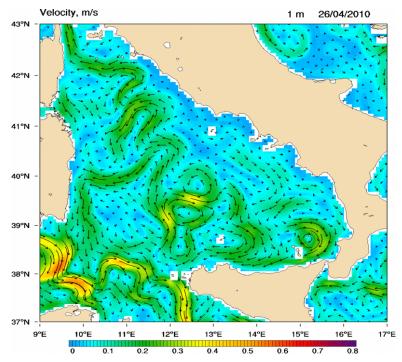
04 Maggio 2010 00UTC Forecast T+3 VT: 04 Maggio 2010 03UTC Altezza onda significativa (metri) + direzione media

Supporto alle Operazioni Navali

C.U.G.RI.


Consorzio inter-Universitario per la Previsione e Prevenzione dei Grandi **RI**schi Università di Salerno - Università di Napoli "Federico II"

ISTITUTO IDROGRAFICO DELLA MARINA



M.F.S. ad Alta Risoluzione

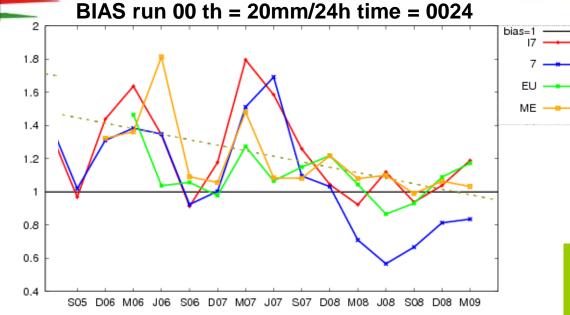


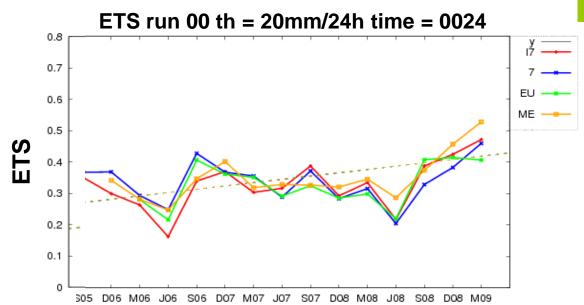
VERIFICHE DEI MODELLI

	FORECASTED		
		NO	YES
OBSERVED	NO	A	В
	YES	С	D

#	16	387		7A 97
MEAN]	ING	INDEX	RANGE	IDEAL VALUE
Overestim underesti		$BIAS = \frac{B+D}{C+D}$	[0 , ∞]	1
Eq. Threat	Scores	ETS	[-1/3,1]	1

Cortesia di **Elena Oberto ARPA-PIEMONTE**



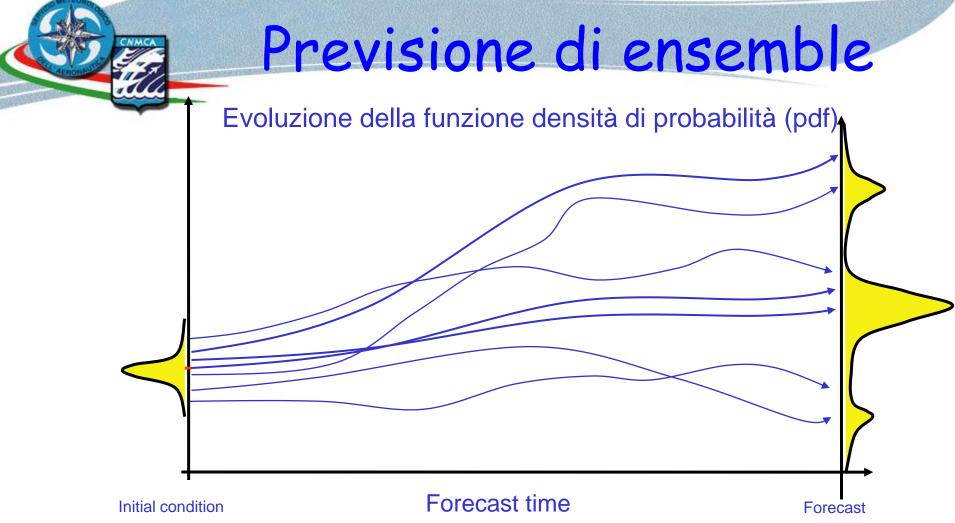


BIAS

VERIFICHE DEI MODELLI

Cortesia di
Elena Oberto
ARPA-PIEMONTE

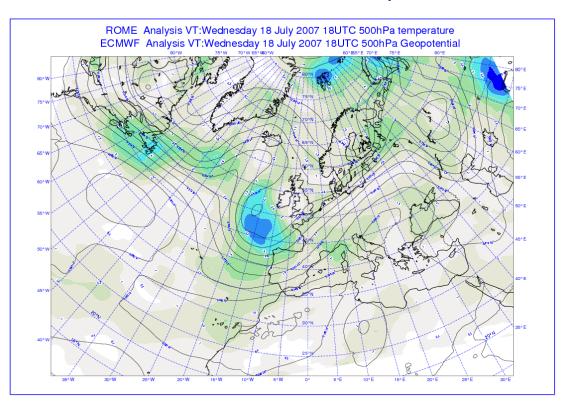
Previsione di ensemble


L'atmosfera è un sistema caotico.

Piccoli errori nelle condizioni iniziali (dovuti al limitato numero e alla non omogenea distribuzione delle osservazioni) possono crescere rapidamente durante la previsione.

La predicibilità è limitata anche dagli errori dei modelli numerici (processi fisici descritti con un certo grado di accuratezza e rappresentati con una certa risoluzione spaziale e temporale, anche per limiti nelle risorse di calcolo).

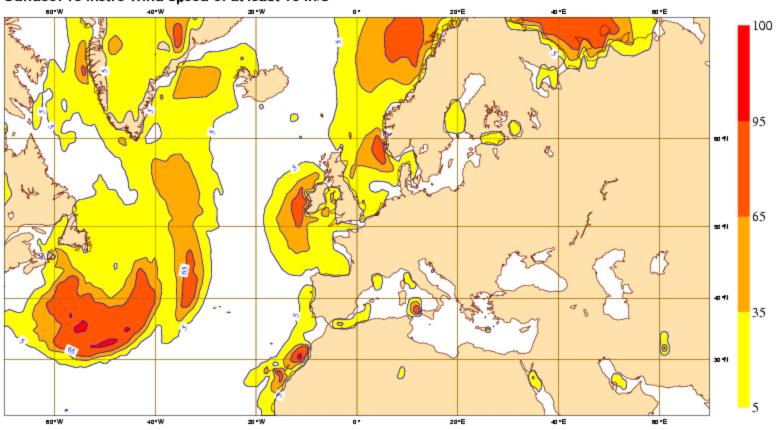
Queste due sorgenti di incertezza limitano la qualità di una singola previsione deterministica.


Le condizioni iniziali non saranno mai conosciute esattamente. Anche se il modello fosse perfetto, due stati iniziali, che differiscono leggermente, possono determinare due previsioni che divergono rapidamente col tempo. Con l'approccio ensemble si cerca di stimare la pdf degli stati previsti usando un numero finito di prev. determ.

Previsione di ensemble

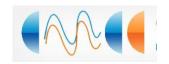
Un sistema di Assimilazione Dati basato sulla tecnica LETKF (Filtro di Kalman Stocastico) è in fase pre-operativa al CNMCA.

Un sistema di previsione probabilistico per la breve scadenza è in fase di implementazione



Previsione probabilistica

Wednesday 28 April 2010 00UTC ©ECMWF Forecast probability t+096 VT: Sunday 2 May 2010 00UTC Surface: 10 metre Wind speed of at least 10 m/s

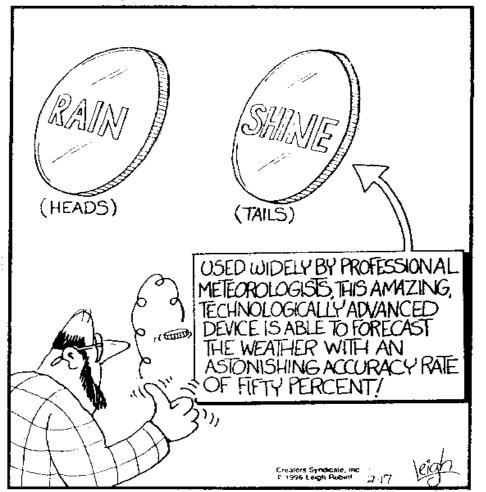


NWP: ATTIVITA' E COLLABORAZIONI

Data Assimilation

* Local Area Modeling Constitut for SMILL SCRILE MODELING

Post Processing



Grazie per l'attenzione!

RUBES by LEIGH RUBIN

Il processo di previsione

Dati (raccogliere tutti i dati disponibili)

Analisi (capire cosa sta accadendo)

Previsione con modelli: numerici o soggettivi (qual'è l'evoluzione futura)

Verifica (previsione corretta?, come migliorare?)

